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Abstract 
In this study, we explore the optimization of virtual power plants (VPP), consisting of a portfolio of 
biogas power plants, a battery and a set of intermittent sources such as wind and solar. We 
operate under price and weather uncertainty and in order to handle it, we employ methods of 
machine learning. For price modelling, we take into account the latest trends in the field and the 
most up-to-date events affecting the day-ahead and intra-day prices. We demonstrate the 
performance of the price models by both statistical methods and improvements in the profits of 
the virtual power plant. Optimization methods will take price and weather forecasts as input and 
conduct computer solving parallelization, decomposition, and splitting methods in order to handle 
sufficiently large numbers of biogas power plants and intermittent sources in a VPP. Finally, we 
demonstrate the positive social impact of such VPPs and the proposed strategies. 
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Executive Summary  

In this report, we consider balancing the electricity generated by a wind park with the electricity 
generated by a portfolio of controllable assets: biogas-fired power plants and batteries. Prior to 
being included in the VPP, the bio-gas power plants may participate on all existing electricity 
markets: bilateral, intraday, day ahead, ancillary service, balancing, etc. By becoming part of the 
VPP, the biogas powered plant is supporting the optimization of incomes received by the 
conjunction of all participating members: wind power parks and batteries as well. As a result, the 
aggregated financial outcome is more favourable than what would be the sum of the independent 
outcomes. The achievement of this task is challenging in terms of optimization and price 
forecasting methods, and the authors focused on both. 

The optimization is of mixed integer type and the authors developed complex decomposition 
methods to solve the issues. 

Several methods based on machine learning have been tested for the wind output forecasts. The 
goal was to maximizing the resulting cumulative revenue under operational and physical 
constraints, and given the predictions available for the intermittent energies outputs and for the 
market. We also utilize commercial forecasts and our forecasting methods turned out to be 
competitive with these forecasts in terms of the resulting cumulative revenue. We also pay special 
attention to the robustness of the VPP to handle large amounts of assets within it; at measure 
that the number of assets in the VPP increases, this becomes more important, hence for the large 
scale deployment of the optimization algorithm, the speed and safety of convergence that is 
demonstrated in this document matters most. Besides, we utilize Robust Model Predictive Control 
in order to take many scenarios into account during decision making.  
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1. Introduction 

The optimization of virtual power plants (VPP) operation is of crucial importance for it enables 
because allows a more efficient incorporation of distributed energy resources (DER) into the grid, 
and thereby contribute to the achievement of goals associated with ecology. The electricity 
generation powered by solar and wind energy sources it is characterised by a high degree of 
uncertainty due to weather dependency, and require constant balancing from other controllable 
electricity generators. From the ecological point of view, it is desirable that the balancing is carried 
out by controllable generators powered by non-fossil fuels.  

In edgeFLEX project, the balancing of the wind parks has been provided by means of pools of 
biogas (renewable fuel) power plants, and pools of batteries. The calculations have been 
accelerated by means of mathematical methods of decomposition and splitting, leveraging special 
structure of problems, parallelization, and the brute force power of optimization solvers.  For the 
optimization of the VPP’s operation, we use state of the art commercial wind forecasts in order to 
nominate the amounts of energy that our wind turbines are able to produce, and the goal of the 
flexible assets is to handle the aggregate imbalances in both directions: biogas power plants can 
balance only deficiencies while batteries can also balance surpluses.    

The goal of the biogas power plants and batteries is to maximize their revenues from selling 
electricity on the day-ahead and intra-day markets while providing balancing to the pool of the 
DERs, as is set-up as a problem in §2. One important research component within the optimization 
of VPPs operation is the method known as Alternating Direction Method of Multipliers (ADMM), 
which is a technique based on replacing the solution of a large-scale optimization problem with 
an iterative procedure involving solutions of a large number of small subproblems. [6], [17]. A 
special facet of this method known as Proximal Jacobian ADMM (as will be explained in § 7.3) is 
proven to (1/k)-converge for linear programming problems and to be amenable to parallelization 
[8]. This algorithm will also be used in our research. In this study, we apply this method for 
optimizing large pools of power plants where we deal with integer variables.    

Before taking up the main topic of this paper, we mention in the following several relevant research 
in the field of managing Virtual Power Plants.  

In [22], the authors explore the management of virtual power plants and the incorporation of wind 
and solar parks into them. They propose a model involving separate operation of assets but a 
joint scheduling of them. Their model is based on Shapley value theory for profit distribution, and 
it is applied on case studies in China.  

In [6], the authors provide ADMM-based dispatch techniques for virtual power plants which are 
also applied case studies developed in China. However, the authors do not take integer values 
into account.   

In [17], the authors propose the algorithm of the implementation of ADMM within the blockchain 
while conducting the aggregation by means of a smart contract which can be used for any ADMM-
based algorithm. The main point is that the aggregation relates to elementary operations with 
matrices and vectors, i.e. the operations that can be implemented within ADMM in a matter of 
milliseconds.  

In [26] and [15], the authors provide the management of VPPs where gas-fired power plants 
balance a wind park. In the wind forecast methods they use spatial correlations. In [15], the 
authors propose a technique called Robust Model Predictive Control which we also employ in the 
management of the VPP.  

According to [7] it is crucial to incorporate biogas power plants into the grid. To the best of our 
knowledge, research in the field of optimizing VPPs containing biogas power plants is limited, and 
in edgeFLEX project, we are going to fill this gap. In the framework of this project we will 
concentrate on balancing of wind parks, but it can easily be shown that the logic of the presented 
algorithms can be translated to broader classes of DERs [9].   
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1.1 Scope of this document 

The present document is the report regarding the task 4 of work package 3: “Optimisation of a 
VPP consisting of variable and dispatchable RES”.  

The aim of this task is to analyse the possibilities of balancing the intermittent power production 
based on variable RES (wind and solar), using dispatchable RES. The assets that we analyse 
are as follows: a battery, two biogas power plants and a wind park. I.e. the biogas power plants 
and the battery are aimed at balancing the wind park. The operational process is the following: 
the wind park operator indicates the electricity generation schedule that is foreseen to be 
produced, then the schedule becomes mandatory for all VPP members. The flexible (controllable) 
assets will make sure that the values indicated in the schedule will be realized.  

The biogas power plants in our portfolio have neither classical timing constraints nor operation 
costs. Its only constraint is that the total number of switches of turbines per year should not exceed 
a predefined number. Apart from exploring this VPP (Table 2 and Figure 2), we also consider 
hypothetical pools of biogas power plants with hundreds of assets and with turbines having 
classical timing constraints in order to broaden the scope and the applicability of the proposed 
optimization methods.  

Special attention is devoted to day-ahead energy price forecasts and the quality of the forecasts 
is measured by the improvements in the cumulative revenue. 

Improvements in the forecasting performance of prices and in optimization methods are important 
to enable a better re-balancing of variable RES, and thereby promoting a further increase of RES 
in the total energy mix. 

1.2 How to read this document 

This report goes through optimization methods aimed at maximizing the total revenue and we 
focus on two basic features: precision in the presence of uncertainty and the robustness of 
optimization methods to the size of problems, i.e. the number of assets in the VPP. Table 5 and 
Figure 1 summarize the results related to the ability of the VPP to deal with new flexible assets in 
the pool. Figure 2 and Table 6 summarize the cumulative revenues yielded for different forecast 
methods (commercial, mSSA, N-BEATS, DeepAR) and control methods (MPC vs RMPC). We 
also provide the details of the features of the problem in the section Nuances of Optimization. 
Section 2 provides the description of the assets and the optimization problem. In Section 3, we 
provide the structural form of the optimization problem, which is amenable to asset-wise 
decomposition and splitting. In Section 3, we also describe our method called Gradual Increase. 
Section 4 is devoted to Model Predictive Control techniques. Section 5 describes our day-ahead 
price forecasts. Section 6 mentions the specific features of the optimization. Section 7 presents 
the results: Subsection 7.1 studies the robustness of the system to the increasing number of 
assets; Subsection 7.2 studies the precision yielded by different price forecasts; Subsection 7.3 
mentions the positive social impact of the proposed methods. And then we move to the 
conclusion.  
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2. Problem Description 

This chapter includes the description of the assets that will be subject for optimization, and the 
mathematical model of the optimization problem. 

2.1 Description of the assets 

edgeFLEX have a portfolio of two biogas power plants and a battery and their goal is to balance 
the production of wind parks located in 8 regions of Germany: the power plants and the battery 
are also located in Germany.  

The process develops as follows: the operators of the wind assets forecast the amount of 
electricity produced by their assets. The electricity production based on wind is uncertain because 
it is weather dependent. Therefore, balancing the electricity generated by such assets is of utmost 
importance. The goal of the pool of biogas power plants and batteries is to handle the aggregate 
imbalance. The names of neither biogas power plants nor batteries nor wind parks can be 
disclosed for confidentiality reasons. We have detailed data for two biogas power plants and one 
battery.  

The turbines within the biogas power plants have no classical timing constraints except for the 
condition that the maximum number of switches per year is limited to 1500. When exploring the 
speed of our algorithms, we impose timing constraints because they are typical for the turbines. 
We replicate the assets within the pool in order to explore how the increasing number of assets 
affects the speed of the calculations. When replicating assets, we predefine the number of assets 
in the pool and randomly assign the storage capacities, gas inflows, maximum and minimum 
productions of the turbines and minimum on and off times for the turbines within biogas power 
plants (timing constraints). In replicating, the wind park increases proportionally to the increase in 
flexible assets. This enables us to apply the proposed algorithms for a broader scope of asset 
types.  

The field of operation is the German market EEX (day-ahead and intra-day) and we use the price 
forecasts as objective value coefficients. We model the imbalance by means of autoregressive 
models. In our biogas power plants the processes of fertilization and electricity production are 
separated. We are guaranteed to obtain fixed amounts Ὂ (see Table 1) of biogas (measured in 
MWh) every 15 minutes and we concentrate only on electricity production. In this study, we do 
not consider biogas power plants with heating rods, but we see this as a subject for further 
research. 

2.2 The Notation 

The formulation of the optimization models requires a specific notation which is provided in Table 
1 and Table 2. 

Table 1 Notation: constants 

Symbol Explanation 

Πὃ the number of assets 

ΠὝὯ the number of turbines within asset k 

Ὁ  the maximum storage of asset k (MWh) 

Ὂ the flow of biogas power plant k every 15 minutes (MWh) 

– the efficiency of the discharge of battery k 

– the efficiency of the charge of battery k 

ὖάὭὲ  the minimum power of Turbine i of Asset k (MW) 
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ὖάὥὼ  the maximum power of Turbine i of Asset k (MW) 

Ὂὶὧ  the day-ahead price at time t 

Ὂὶὧ  the intra-day price at time t 

ὅ  the cost of switching-on of Turbine i of Asset k  

ὅ  the cost of switching-off of Turbine i of Asset k at time t 

ὟὝ ȟ the minimum on time of Turbine i of Asset k at 

ὈὝ ȟ the minimum off time of Turbine i of Asset k at 

ὸᶅȟὯȟὭ the shorthand for: for all ὸɴ ρȟȣȟὝ and all ὯᶰρȟȣȟΠὃ and all 

Ὥɴ ρȟȣȟΠὝὯ  

 

Table 2 Notation: Variables 

Symbol Explanation 

ὴȟȟ the total power produced at time ὸ by Turbine Ὥ of Asset Ὧ 

ὴȟȟ the day-ahead power produced at time ὸ by Turbine Ὥ of Asset Ὧ 

ὴȟȟ the intra-day power produced at time ὸ by Turbine Ὥ of Asset Ὧ 

όȟȟ the state of Turbine Ὥ of Asset Ὧ at time ὸ 

ὺȟȟ the switch-on decision of Turbine Ὥ of Asset Ὧ at time ὸ 

ύȟȟ the switch-off decision of Turbine Ὥ of Asset Ὧ at time ὸ 

ίέὧȟ   the storage level of Asset (Power Plant) Ὧ at time ὸ (MWh) 

ίέὧȟ the storage level of Asset (Battery) Ὧ at time ὸ (MWh) 

ὴȟȟ the discharge of battery Ὧ at time ὸ 

ὴȟȟ the charge of battery Ὧ at time ὸ 

ὼ the set of all variables ὴȟόȟὺȟύȟίέὧȟὴ reduced to asset Ὧ 

ώ the set of all variables ὴȟόȟὺȟύȟίέὧȟὴ reduced to time ὸ 

ᾀᶻ 
the optimal value of variables z. Any variable superscripted with a star 
denotes the value optimal for the objective function 

2.3 The Objective 

The objective is to maximize the revenues of pools of biogas power plants and batteries while 
balancing the wind park and taking technical constraints into account. The technical constraints 
of the turbines are their maximum and minimum production per period and the timing constraints. 

We define the objective to be maximized as follows: 

 Ὂὶὧ ὴȟȟ Ὂὶὧ ὴȟȟ ὅὺȟȟ ὅύȟȟ

ΠΠ

ȟ (1) 
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which implies that we optimize our revenue from the sale of energy on the market penalizing every 
switch-on and -off with costs ὅ  and ὅ , where Ὧ denotes the index of an asset and Ὥ is the index 

of a turbine. In the case of a battery, these costs are zero.   

The constant Ὕ denotes the prediction horizon that we use for the optimization and Ὂὶὧ , 

Ὂὶὧ  are the forecasts of day-ahead and intra-day prices at time ὸ, respectively. 

2.4 The Constraints 

In this subsection, we describe all of the constraints associated with biogas power plants.  

2.4.1 Binary Constraints 

We employ 3bin formulation [16], and all όȟὺ, and ύ variables (Table 2) are binary, i.e. 

 όȟȟȟὺȟȟȟύ ȟȟ ɴ πȟρ   ᶅ ὭȟὯȟὸȢ                   (2) 

   

2.4.2 Constraints for the biogas power plants 

In this subsection, we write out all the constraints associated with biogas power plants.  

2.4.2.1 Power Constraints   

For every turbine we have two basic values: ὖάὭὲ   π and ὖάὥὼ   ὖάὭὲ  which implies 

that it can either do nothing or produce within the interval ὖάὭὲ ȟὖάὭὥὼ  i.e. 

  ὴȟȟ  ɴπ  ᷾ὖάὭὲ ȟὖάὥὼ     ᶅ ὸȟὯȟὭ (3) 

These constraints can be written using the όȟȟ variables which equal 1 if at time t the Ὥ-th turbine 

of Asset Ὧ is on and it is 0 otherwise: 

  ὴȟȟ  ὖάὭὲ  όȟȟ   πȟ ὖάὥὼ όȟȟ  ὴȟȟ   π    ᶅ ὸȟὯȟὭȢ  (4) 

The power produced can be decomposed to two components: the power used for the Day-Ahead 
market and the power used for the Intra-Day market, i.e. 

 ὴȟȟ ὴȟȟ ὴȟȟ    ᶅὸȟὯȟὭ (5) 

2.4.2.2 Storage constraints 

Every biogas power plant Ὧ has its own storage and a constant flow of gas Ὂ (expressed in MWh) 
into it. The new storage level is equal to the old level added by Ὂ and subtracted by the aggregate 

energy produced by all turbines within Asset Ὧ during one period:  

 ίέὧȟ ίέὧ ȟ Ὂ  ὴȟȟ

Π

ẗῳ ὸ    ᶅ ὸȟὯȟ       ɝ Ô ρυ ÍÉÎÕÔÅÓ (6) 

and we have the box constraints:  

 ίέὧȟ ᶰπȟὉ       ᶅὸȟὯȢ  (7) 
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2.4.2.3 Timing constraints 

The on and off decisions for the turbines are conducted via binary switch-on (ὺ) and binary switch-

off (ύ) variables as follows [16]: 

 όȟȟ ό ȟȟ ὺȟȟ ύȟȟ   ᶅ ὸȟὯȟὭȢ (8) 

If at time ὸ a turbine Ὥ of asset Ὧ is on or off than it has to be on or off for at least ὟὝ ȟ  and 

ὈὝ ȟ periods, respectively, which is expressed as follows: 

  ὺȟȟ
ȟ

  όȟȟ  ÁÎÄ  ύȟȟ
ȟ

  ρ όȟȟ   ᶅ ὸȟὯȟὭȢ (9) 

 

2.4.2.4 Timing constraints tuning 

We have “light” requirements on our turbines from the biogas power plants that we explore. This 
term of “light” requirement identifies complementary constraints, in this case the maximum 
number of switch-ons per year. These conditions can be handled by imposing penalties for switch-
ons and switch-offs. On the other hand there are, generally, turbines with strict timing constraints 
therefore in our exploration of the speed of the decomposition algorithms, we intentionally impose 
timing constraints in order to broaden the scope of applications of our algorithms.  In any case, if 
it is possible to handle the timing constraints by penalizations ὅ   and ὅ , we should do this 
because the constraints  (9) account for most of inequality constraints of the problems and their 
removal can lead to significant reductions of the computation time. Even if it is not possible to 
handle the timing constraints with the penalization, we can observe that it is not likely that we 
would switch off when the price is high or switch on when the price is low except for technical 
requirements. So we formulate if-then conditions dependent of the average price of the prices in 
the objective value and on the average price in the preceding history in order to decide which 
constraints from (9) to remove. If these constraints are not tight, then they will not affect the 
objective value [4]. We always check whether the resulting solution is feasible for the whole 
problem and otherwise we solve the whole problem. We denote this method as ( )-prune (See 
Table 5). In our further research, we will consider the methods of machine learning to replace 
these if-then conditions. 

2.4.3 The constraints for batteries 

In this subsection, we write out all the constraints associated with batteries.  

2.4.3.1 Power constraints 

For every battery we have the following power constraints: 

 

ὖάὥὼȟ όȟȟ  ὴȟȟ   π    ᶅ ὸȟὯȟ  

 ὖάὥὼȟ ρ όȟȟ  ὴȟȟ   π    ᶅ ὸȟὯȟ 

  ὴȟȟ ὖάὭὲȟ ύȟȟ   π    ᶅ ὸȟὯȟ 

ὴȟȟ ὖάὭὲȟ ὺȟȟ   π    ᶅ ὸȟὯȢ 

(10) 

Constraints (10) ensure that we cannot charge and discharge at the same time. 

The update of the storage level and the state of charge is conducted as follows: 
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 ίέὧ  ȟ  ίέὧȟ ɝὸẗ–ẗ ὴȟȟ    
ὴȟȟɝ ὸ

–
    ᶅ ὸȟὯȟ   (11) 

where ɝὸ is always 15 minutes. 

2.4.3.2 Tightening constraints 

 ὺȟȟ  όȟȟ   ÁÎÄ   ύȟȟ  ρ  όȟȟ   ᶅ  ὸȟὯȟ (12) 

 and for all ὸ we have box constraints:  

 ίέὧȟ  ɴπȟὉ   ᶅ ὸȟὯȢ  (13) 

2.4.3.3 Switches of the batteries 

The on and off decisions for the batteries are conducted via binary switch-on (ὺ) and binary 

switch-off (ύ) variables as follows: 

 όȟȟ ό ȟȟ ὺȟȟ ύȟȟ   ᶅ ὸȟὯȢ (14) 

 

2.4.3.4 Components of the objective function 

We define the variables ὴȟȟ as follows: 

 ὴȟȟ  ὴȟȟ  ὴȟȟ    ᶅ ὸȟὯȟ (15) 

which is included in the objective (1).  

2.4.4 Coupling constraints  

The coupling constraint is a task that all flexible assets have to fulfill. This is given by the 
imbalance Ὅὄ  ᶅὸ between the realized and forecasted production of the intermittent sources:  

    

Π

   

Π

 ὴȟȟ   Ὅὄ ȟ  ᶅὸȢ (16) 

Let us note that the right-hand side of (16) is the input that we have to estimate. This boils down 
to estimating the imbalance which is a challenging task. In this study we approach the imbalance 
by means of two methods: 

¶ Taking the historical imbalance: perfect foresight. We will use it as a benchmark. This will 

be the upper bound to the problem. 

¶ Fitting the imbalance with ARMA processes and using simulations. 

2.4.5 Optimization problem formulation 

Summarizing the aforementioned constraints and objectives, we can formulate the optimization 

problem with the forecast parameters:  Ὂὶὧ , Ὂὶὧ , and ὈὭίὦὥὰὥὲὧὩ as follows: 

ÍÁØÉÍÉÚÅ Ὂὶὧ ὴȟȟ Ὂὶὧ ὴȟȟ ὅὺȟȟ ὅύȟȟ

ΠΠ

 

ίȢὸȢ                             ς ρφȢ 
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which we denote as follows: ὠὖὖὊὶὧ ȟὊὶὧ ȟὈὭίὦὥὰὥὲὧὩ. For the problem 

ὠὖὖὊὶὧ ȟὊὶὧ ȟὈὭίὦὥὰὥὲὧὩ, we define the additional notation: 

¶ ὠὖὖ Ὂὶὧ ȟὊὶὧ ȟὍὄ is the optimal solutions of the problem, i.e.: 

ὠὖὖ Ὂὶὧ ȟὊὶὧ ȟὍὄ ὴ ᶻȟὴ ᶻȟὴᶻȟὴᶻȟὴᶻȟόᶻȟὺᶻȟύᶻȟίέὧᶻ  

¶ ὠὖὖὊὶὧ ȟὊὶὧ ȟὍὄ is the realized value of the problem, i.e. 

ὠὖὖὊὶὧ ȟὊὶὧ ȟὍὄ  

 Ὓὴὸȟȟὴȟȟ
ᶻ Ὓὴὸὴȟȟ

ᶻ

ΠΠ

ὅὺȟȟ
ᶻ ὅύȟȟ

ᶻ  

¶ ὠὖὖ Ὂὶὧ ȟὊὶὧ ȟὍὄ is the revenue yielded from  ὠὖὖ Ὂὶὧ ȟὊὶὧ ȟὍὄ i.e.  

ὠὖὖ Ὂὶὧ ȟὊὶὧ ȟὍὄ Ὂὶὧ ὴȟȟ Ὂὶὧ ὴȟȟ

ΠΠ

 

is the realized revenue when the prices and the imbalance become known. When we 

replace the forecast of the imbalance Ὅὄ with its realizationὍὄ, then we check if the 

feasibility is preserved. If so we directly apply the sum ὠὖὖ ὛὴὸȟὛὴὸȟὍὄ as the 
realized value. Otherwise we buy the missing energy on the market. 

¶ ὠὖὖ ὛὴὸȟὛὴὸȟὍὄis the realized revenue when the prices and the imbalance 

become known within the execution horizon Ὤ, i.e. 

ὠὖὖ ὛὴὸȟὛὴὸȟὍὄ Ὓὴὸὴȟȟ Ὓὴὸὴȟȟ

ΠΠ

 

This value will be used in Model Predictive Control.  

¶  ὠὖὖᶻ Ὓὴὸ ȟὛὴὸȟὍὄ is the realized revenue from the solution of the perfect 

foresight problem ὠὖὖὛὴὸ ȟὛὴὸȟὍὄ, where Ὅὄ is the realized imbalance. The 

settings of Problem ὠὖὖᶻ Ὓὴὸ ȟὛὴὸȟὍὄ correspond to the state of perfect 

foresight, i.e. when all the uncertain values are known up front. This value is used as 

the benchmark. 

¶ The goal is to elaborate such a strategy that the ratio 

„
ὠὖὠ Ὓὴὸ ȟὛὴὸȟὍὄ

ὠὖὖz Ὓὴὸ ȟὛὴὸȟὍὄ
 

is as close to 1 as possible which can be increased by better optimizations and better 
forecasts.  

We also introduce the optimization problem ὠὖὖὊὶὧ ȟὊὶὧ ȟὍὄȟὛὸὥὸὩ which differs from 

ὠὖὖὊὶὧ ȟὊὶὧ ȟὍὄby specifying starting conditions of turbines and storage levels constrained 

in the variable ὛὸὥὸὩ.  
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3. A Structural Asset-Based Problem Formulation 

The problem  ὠὖὖὊὶὧ ȟὊὶὧ ȟὍὄ has a linear objective and all linear constraints, therefore it 
can easily be shown that it can be rewritten in the following form: 

 ÍÁØÉÍÉÚÅὴ ẗ ὼ 

Π

 (17) 

 ÓȢÔ     ὃ ẗ ὼ ὥȟ

Π

 (18) 

   

 ὄ ẗὼ ὦ (19) 

    ὼ Ὅᶰπȟρ (20) 

                                     ᶅ ὯᶰρȟςȟσȟȣȟΠὃ (21) 
 

 

where ὼ represents all variables associated with Asset Ὧ, in other words ὼ constrains all 

variables from Table 2, whose Asset's index is Ὧ. The vector ὴconsists of all objective value 

coefficients from Expression  (1) associated with Asset Ὧ and Expression (17) is equivalent to 
Expression  (1).  In an analogous manner Equation (18) is equivalent to Equation  (16) and 
Expression (19) is equivalent to Expressions (3)-(15). And the Expression (20) is equivalent to 
(2).  

3.1 Description of gradual increase 

The main idea behind the method of Gradual Increase lies in the proper use of the warm start. 
When we have to handle a task ὥ from (18), we can check whether it is possible to implement it 
with a smaller number of assets (or turbines within the assets). If it is possible, then the resulting 
solution can be used as a start in either a larger or the entire pool. We try to start with a minimum 
sub-pool capable of implementing the task and add assets to the pool with its consequent 
optimization, until the entire pool is achieved. When implementing this algorithm, we make sure 
that the branch & bound trees will not be destroyed. We achieve this by the parallel run of the 
problem containing all assets which is interrupted whenever a new feasible solution is found: we 
feed the problem with a new resume point and resume optimization. Some problems are so 
complex that it may happen that even the best solver will not be able to find a feasible solution to 
it. However, Gradual Increase enables us to find a feasible solution for the entire pool from the 
solution of a subproblem. Formally, the method is as follows: let us assume that ὛόὦὛὩὸπṒ
 ρȟςȟȢȢȢȟΠὃ , where ὛόὦὛὩὸπ is a first sub-pool of the whole pool. Then the first problem, can 
be formulated as follows: 

 ÍÁØÉÍÉÚÅ ὴ ẗὼ

ᶰ

 (22) 

 

 ÓȢÔȢ      ὃ ẗὼ ὦ

ᶰ

ȟ (23) 

 ὄ ẗὼ ὦȟ (24) 

    ὼ Ὅᶰπȟρȟ (25) 

          ᶅ ὯᶰὛόὦὛὩὸπȢ (26) 
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As a warm start, for the first problem, we can choose the states of turbines (ό) from the solution 

of the problems in the previous period. Since ΠὛόὦὛὩὸπ Πὃ, the Problem (22)-(26) contains 
fewer variables and constraints than the initial problem and should be solved faster except for 
specific cases, e.g. when the pool is so small that it is overloaded. Having solved this problem, 
we get a sequence of vectors  ᾀ, ὯᶰὛόὦὛὩὸπ. Then, when we get a larger sub-pool ὛόὦὛὩὸρ 
such that: 

ὛόὦὛὩὸπṒ ὛόὦὛὩὸρ ÁÎÄ ὛόὦὛὩὸπ  ὛόὦὛὩὸρȢ 

Hence, we will be able to formulate the following problem for Ὦ π: 

 

ÍÁØÉÍÉÚÅ ὴ ẗὼ

ᶰ

 

 

ÓȢÔȢ      ὃ ẗὼ ὥȟ

ᶰ

 

                                      ὄ ẗὼ ὦȟ   ὼ Ὅᶰ πȟρ, 

                                      ᶅὯᶰὛόὦὛὩὸὮ ρ, 

                                      ὼȢίὸὥὶὸᾀ    ᶅάᶰὛόὦὛὩὸὮ, 

                            ὼȢίὸὥὶὸὫ    ᶅάᶱὛόὦὛὩὸὮȟ 

(27) 

where Ὣ  is the optimal solution (argmin) of the following problem: 

 

ÍÁØÉÍÉÚÅ ὴ ẗὼ  

ÓȢÔȢ    ὃ ẗὼ ȟ 

ὼ Ὅᶰ πȟρȟ 

ὄ ẗὼ ὦȟ 

(28) 

Thus, the solution , Ὧᶰ ρȟςȟȣȟΠὃ defined as follows: 


ᾀȟ   ὯᶰὛόὦὛὩὸὮ ρ
Ὣȟ   ὯᶱὛόὦὛὩὸὮ ρ

 

is a feasible solution of Problem (22)-(26), i.e. suitable for the warm start, because: 

ὃ ẗ  ὃ ẗ

ᶰ

ὃ ẗ

 ɵ

  

Π

 

ὃ ẗᾀ

ᶰ

ὃ ẗᾀ

 ɵ

 ὥȢ 

The rest (related to the feasibility of ) is evident.  

These warm starts have enabled us to solve a large number of problems much faster than when 
we would just rely on the power of an open-source or commercial solver. When we optimize the 
same pool then we can take the experience from previously solved problems in order to 
accelerate the solution of new problems as follows: 

1) Exploration of which sub-pools would lead to a faster solution on previously solved 

problems and applying these sub-pools for new problems.  
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2) Exploration of the warm start: we can check if the binary variables from the previous 

problem can be used in the warm start: if it is possible then the first feasible solution will 

be obtained by means of LP otherwise the solver will start from scratch. 

3) Exploration of what solver parameters from previously solved problems would lead to 

faster solutions of these problems and application of these parameters on the new 

problems. 

We will compare the results obtained by the Proximal Jacobian ADMM and Gradual Increase and 
we will combine both of the methods. 
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4. Operation of the VPP based on Historical Data 

We consider the VPP to be composed of predefined assets, and we apply historical prices and 
production together with their corresponding historical forecasts. The wind production forecast is 
the task of the wind park: based on the prognosis the operators of the park inform the market 
operator that they are able to produce a specific schedule. The imbalance between the produced 
and forecasted wind energy is the task of the flexible assets: the surplus of the will be consumed 
by the batteries while the deficiency will be covered either by the biogas power plants or by 
discharging the batteries. This implementation will be conducted in the Model Predictive Control 
fashion where we solve the problem every 15 minutes when new information about prices and 
the weather arrives. 

4.1 Model predictive control (MPC) 

Model Predictive Control is a feedback control technique that naturally incorporates optimization 
[15], [3], and [14]. In this study we consider certainty equivalent MPC and robust MPC proposed 
in [15]. In certainty equivalent MPC, we replace random quantities with predictions, and solve the 
associated optimization problem to produce the schedule over the selected planning horizon. 
After optimization, we execute the first power schedule, i.e. the one associated with the time of 
optimization. For the next step, we repeat this process incorporating the updated information 
about price and imbalance forecasts. Following the notation from Table 4, we define the MPC 
algorithm as follows:  

Take the initial state ὛὸὥὸὩ of the system (storage levels and states of the turbines) as the first 
input.  

for ὸ ρ to ὔ do: 

¶ Forecast. Make price and imbalance forecasts that will be used  as inputs in the 

optimization:  

╕►╬◄   ὊὶὧȟὊὶὧ ȟȢȢȢȟὊὶὧ ȟ   

ɝ ὴὶέὨ       ɝ ὴὶέὨ ȟɝ ὴὶέὨ ȟȢȢȢȟɝ ὴὶέὨ Ȣ   

¶ Optimize. Solve the dynamic optimization problem: 

 ὠὖὖὊὶὧ ȟὊὶὧ ȟɝ ὴὶέὨ ȟὛὸὥὸὩ ȟ (29) 

where ╕►╬◄ determines the objective value and ὴὶέὨ   determines the right-hand side of 
the power production constraints. Solving this optimization problem yields the decision 
vector        ◐◄  ώȟώ ȟȢȢȢȟώ Ȣ 

¶ Execute. We execute only ώ from the whole vector ◐◄ because this decision relates 

to the most up-to-date time step and discard the rest of the components of ◐◄.  

¶ Determine the value ὙὩὺὩὲόὩ which is the revenue associated with the execution of 

ώ which equals:   

ὙὩὺὩὲόὩ  ὠὖὖ Ὓὴὸ ȟὛὴὸ ȟɳ ὴὶέὨ    

and the next state is:   ὛὸὥὸὩ  ὪὛὸὥὸὩ ȟώȟɳ ὴὶέὨ , where Ὢ is a linear function 
which determines the updates of the storage levels and states of the turbines/batteries 
according to (3)-(11). 

end for 

Thus, the ultimate goal is the maximization of the sum: 

ὝέὸὙὩὺὙὩὺὩὲόὩ  O   ÍÁØȟ 
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i.e. the solution of the problems ὠὖὖẗȟẗȟẗ is an intermediate goal aimed at maximizing the value 

ὝέὸὙὩὺ. And in this study we assess the model in terms of the value of ὝέὸὙὩὺ and the total 
speed-up. All the methods only differ by the approach to problems ὠὖὖẗȟẗȟẗ and we are going to 
apply the following: 

¶ Generic Approach: we rely on the power of the solver without any decomposition or 

splitting.  

¶ Gradual Increase: we perform asset-wise decomposition as it is shown in the 

description of the method and in a similar way we apply this approach on the turbines 

within each biogas power plants. 

¶ Proximal Jacobian ADMM: we start with LP relaxation in order to ensure that the 

coupling constraint is satisfied and then we apply MILP methods to sub-pools (most 

on single power plants) in order to extract an integral solution.  

¶ Partial Integrality: at time ὸ, we relax all integral constraints of all variables 

ώ ȟώ ȟȢȢȢȟώ . This leads to a significant reduction of binary variables while 

providing a feasible action ώ . (Variable ώ is defined in Table 2.) 

¶ Management of Timing Constraints by Penalization: in many situations, we can 

enforce the timing constraints by imposing high penalties on switch-ons and switch-

offs. This enables us to get rid of most of the inequality constraints and thereby to 

significantly accelerate the calculations. 

¶ Parameter tuning with MPC: within MPC, we can run parameter tuning of the solver 

after we have solved a problem. It can be conducted parallel to the solution of the 

new problems. After solving 20 problems, we change the tuning parameters which 

provides further speed-up. In Python's Gurobi environment, this can be conducted by 

means of the operation model.tune( ).  

¶ Hybrid of GI and Proximal Jacobian ADMM: instead of adding single power plants 

in the pool we add them by blocks and in order to solve block subproblems faster, we 

apply Gradual Increase. 

4.2 Robust Model predictive control (RMPC) 

The difference between MPC and RMPC lies in a different approach to the second step of the 
algorithm (Optimize). In (29), there is a single forecast of prices and imbalances. In RMPC 
however [15], we use a predefined number of scenarios ὓ, i.e.  

ὛὧὩὲὥὶὭέ Ὂὶὧ ȟȟὊὶὧ ȟȟɝ ὴὶέὨ ȟ   ÆÏÒ ά ρȟςȟȢȢȢȟὓȟ 

and use each scenario m in order to solve  

  

ÍÁØÉÍÉÚÅ ὠὖὖὊὶὧȟȟὊὶὧȟȟ ῳ ὴὶέὨȟȟ  ὛὸὥὸὩ  

ÓȢÔȢ                                                                                                                  

ὴȟȟ
ȟᶻ  ὴȟȟ

ȟ ᶻz π     ᶅ ὯȟὭ  ÁÎÄ  ᶅ άᶻȟάᶻz  ὓ  ÁÎÄ  ᶅ †  Ὤȟ  

ὴȟȟ
ȟᶻ  ὴȟȟ

ȟ ᶻz π   ᶅ ὯȟὭ  ÁÎÄ  ᶅ άᶻȟάᶻz  ὓ  ÁÎÄ  ᶅ †  Ὤȟ 

(30) 

 

 where the sum in (30) means that we add up all the objectives from the problems 

ὠὖὖὊὶὧȟȟὊὶὧȟȟῳ ὴὶέὨȟȟ  ὛὸὥὸὩ for each ά and maximize their sum; as for the 

constraints, they all are added into the set of the constraints of the resulting problem. The equality 
constraints in (30) ensure that the power produced within each scenario ὛὧὩὲὥὶὭέ  will be the 

same for all the scenarios up to time Ὤ. This also ensures that the execution in the the MPC phase, 
i.e. 

ὙὩὺὩὲόὩ  ὠὖὖ Ὓὴὸ ȟὛὴὸ ȟɳ ὴὶέὨ ȟ   

https://www.gurobi.com/documentation/9.1/examples/tune_py.html
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will be the same for all the scenarios. The rest of the steps of the MPC algorithm remain 
unchanged. It can easily be shown that the same power values for all scenarios also imply the 
same states of the turbines and the same storage levels for all the scenarios when ὸ Ὤ.   
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5. Wind power output forecast 

5.1 Introduction 

The present chapter describes the solution proposed in edgeFLEX for developing a novel spatio 
temporal wind forecasting method (WP 3, Task 3.5 in the GA). 

The goal of this task is to develop an innovative wind forecasting model with improved  
performances compared to traditional site-specific models. in time spans covering 1-6 hours 
before delivery. A better forecasting performance, in this timespan, is important for enabling a 
better re-balancing of intermittent electricity generation, and thereby promoting a further increase 
of sun and wind energies in the overall mix. 

This chapter will go through the details about the data sources, what are they and what 
transformation have been made in order to create a dataset. Secondly, the next part will focus on 
Machine Learning model selection and a brief mathematical explanation of how it works. Then, 
we will dive into the results and the comparison to another top of the basket model. And finally, 
the next steps and way of improvements will be discussed just before a conclusion. 

5.2 Data sources  

In order to create models that may be able to forecasts wind power we need to have some wind 
power data and we need to identify what can have an influence on wind power production in the 
near future. 

5.2.1 Production data 

Alpiq handles a portfolio of wind power farms across Germany and for this project we have 
considered using 9 different assets that are well dispatched in Germany. We decided to select 
only 9 assets as we needed to have a long enough history of production to use. Some are offshore 
and others are well in lands. The graph below shows roughly where the different assets are 
located, and the size of the dot represents the maximum power output. This data comes with a 
granularity of 15 minutes which is what we need. Unfortunately, the data is available only at the 
asset level and not at the turbine level. There are only few missing values.  

Figure 1 Locations of the studied assets 
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5.2.2 Weather data 

The wind power output from wind farms is directly correlated to the current wind speed. For this 
reason, the weather data have been added to the production data.. The weather data have been 
divided into two categories: observation data and weather forecast data.. The observation data 
includes the current observed value of some weather features. The aim of this data is to provide 
the most up-to-date information that is 100% correct. The weather forecast data is used to support 
the forecasts of the weather features values. The more consistent and detailed information we 
provide to the model, the better are the results.  

5.2.2.1 Weather observations data 

These data are collected from the Deutscher Wetterdienst (DWD) which is the German 
meteorological service. It monitors weather and meteorological conditions all over Germany with 
a lot of weather stations. Those data are made available freely through the DWD portal. 
Unfortunately, only 419 stations measure the wind speed and direction and thus the distance 
between the closest weather station and a wind farm is sometimes more than 50km. As one will 
see in the latter part of this report, the distance is of great importance and it has been decided not 
to focus on the assets 2, 5 and 7 because the distance to the closest station was too big. So from 
now on, it will be refer to the assets 1,3,4,6,8,9 as A,B,C,D,E,F. 

It has been decided to collect not all but a selection of the meteorological features that were 
available: 

- Wind speed, wind direction and wind gust [Speed is the average, gust is the maximal 

value] 

- Temperature at 5 meters and at 200 meters 

- Pressure 

For every asset, the closest station that measures all the weather features listed above has been 
selected. The data is collected with a granularity of 10 minutes and is then resampled to match 
the 15 minutes granularity of the production data. Then those 6 meteorological features are 
concatenated to the productions data. This approach is considered reasonably acceptable in the 
lack of better alternative given the flat geography of Northern Germany. 

5.2.2.2 Weather forecasts data  

In order to help the model forecasting better, it has been decided to provide it weather forecasts 
that are freely available and reliable. After several research, the European Centre for Medium-
Range Weather Forecasts (ECMWF) was identified as the only one reliable, ease of access and 
free sources of gridded weather forecast. The International Grand Global Ensemble (TIGGE) 
consists of ensemble forecast data from 10 global Numerical Weather Prediction (NWP) centers. 
These data are available through the ECMWF portal and it was decided to use them. Most of the 
NWP center are run only twice a day, only 3 of them are run 4 times a day. For simplicity and to 
make the data more understandable only one NWP center data was taken: NCEP. The data is 
composed of 4 weather features which are:  

¶ Wind speed and wind direction  

¶ Temperature at 2 meters  

¶ Pressure  

This data is gridded which means that it is available worldwide on a grid that with a certain latitude 
and longitude difference between every point. An option that allows to reduce the distance 
between every point is available and thus a grid of 0.15/0.15 was selected. That means a point 
every 0.15 latitude and longitude. It was not needed to retrieve the entire grid as the assets are 
only located in Germany, so a grid just a bit bigger than Germany was selected.  

For every asset it has been decided to select only the points of the grid that were within a given 
radius. This radius has been set to 20km for issues of computation time during the training phase 
of the machine learning model. This add approximatively 200 columns to the dataset (4 x nb of 
points within radius).  
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The figure below illustrates the grid (blue points), the assets (red points) and the radius of 
selection (green circle). On this figure, for the sake of visibility the radius was set to 50 km.  

  

Another important point is about the granularity. In ideal conditions, it is desired to have weather 
forecasts of 24 hours ahead with a granularity of 15 minutes and a model producing such data 
every 15 minutes. However here the NWP models are run only 4 times a day (0h, 6h, 12h, 18h) 
and with a granularity of 6 hours. So, we had to interpolate the data that we have with the NWP 
models in order to obtain what we want but a significant point was not to use data that has been 
generated in the future.  

To do so, the forecasts were taken at time 0h, this represents 5 points for forecast at value +0, 
+6, +12, +18, +24. An interpolation was generated (linear or quadratic) to have values +0, +0.25, 
…, + 30. Then a sliding window of 24h was used that was slided every 15 minutes to have the 
values in a format that we want. The graph below illustrates this with greater details. 

Figure 2  Weather forecasts grid and selection 
of points around assets 

Figure 3 Detailed description of the interpolation method to reduce 
the weather forecast granularity 
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5.2.3 Seasonality data  

Wind is often stronger during the winter with the different storms, so it was decided to look deeper 
into the production data across seasons. In order to see a general trend, the monthly average 
production data of every asset has been printed on the y axis and the time on the x axis. The 
figure below shows the result.  

One can easily see that around January each year the production is at its highest. Hence, it has 
been decided to introduce columns that can capture the month of the year each row is in. Those 
columns are called dummies because there are 12 columns, one for each month, and for each 
row there is a 1 in the month corresponding to the date and 0 in the others.   

5.3 Machine Learning Model  

5.3.1 Description of the problem  

The problem here is a typical forecast problem using machine learning. Machine learning is a tool 
that requires a fixed (i.e. stable) environment and fixed conditions to work at its best, especially 
when working with time series. Due to computation limits, it is impossible to give the entire history 
available as input. So, it is important to define a fixed size context that will be used before every 
prediction and a fixed size label that will be the ground truth for every prediction.  

Figure 4 Illustration of the effect of seasonality on the production 

Figure 5 High level architecture of a machine learning 
problem 
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5.3.2 Auto-regression versus Sequence-to-Sequence approach 

The data is represented as a time series i.e. a continuum of rows, one every 15min for more than 
a year. To be able to train a machine learning model we must transform this time series format 
into a digestible format for a machine learning model. Such a format has been briefly described 
into the previous section and we will now dig deeper into the mechanism of transformation of the 
data.  

To begin with, it was needed to establish what will be the context also known as X and what will 
be the label also known as Y. In an ideal world, X would be all data before the moment of 
prediction but in order to optimize the computation time, it has been decided to take only a window 
of 24h past data as X. 

What is desired is to forecast the next 6 hours of wind power output. To do so, there are two main 
methods which will be described below. The method selected will indicate how the data should 
be transformed to train a model. 

5.3.2.1 Auto-regressive method 

The idea is to take the input X as mentioned above and predict only the next value of wind power, 
we then adjust the window of input and take the predicted value as input to predict another value. 
And this process is repeated until the model has predicted all the data that we want as you can 
see on the Figure 6 Autoregressive method to predict multi-step ahead . There are some positive 
and negatives to this method:  

- Positive: Easy to predict output that have different length, model easier to train 

because the label has only a size of 1 

- Negative: Errors accumulation, so small error on the model leads to huge error for 

long output 

 

The negative part of this method represents a too big counterpart that is why this is not the method 
that was decided to go further with.  

Figure 6 Autoregressive method to predict multi-step ahead 
forecast 
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5.3.2.2 Seq2Seq 

The second approach is in theory much simpler to understand. Seq2Seq stands for Sequence to 
Sequence and it means that the model takes a sequence as input and output a sequence. It has 
firstly been introduced in 2014 with the paper by (Sutskever, Vinyals and Le).  

This means that a window can be given of for instance 24 hours of data to the model and it will 
compute the entire 24h ahead wind power. Those kinds of models are more difficult to handle 
than the previous ones as the error is computed on the entire output sequence. To be able to 
achieve good results, the data must contain enough information to be able to encapsulate the 
general trend of the data.  

 

This second type of model is the one selected in this case, and the next section will develop the 
actual detail of the model that has been used along with a bit of theory to understand better how 
it works. 

5.3.3 Model selected – LSTM encoder decoder  

5.3.3.1 Encoder Decoder  

The Encoder Decoder is the way Sequence to Sequence model works. In fact, the input sequence 
goes into the encoder that convert the whole sequence into a context vector. Then this context 
vector is given as input to the decoder which generates a sequence as output. Each block of the 
encoder and of the decoder are Recurrent Neural Network (RNN) cells and in the next section it 

Figure 7 Seq2Seq method for multi-step 
ahead forecast 

Figure 8 Encoder Decoder architecture 
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will be discussed further about which RNN cells it is decided to go with and why. The figure below 
depicts the general idea of the encoder decoder.  

5.3.3.1.1 Encoder  

The Encoder transforms an input sequence into a fixed-shape Encoder Vector (it will be named C 
for context). It is composed of RNN cells and the ideas lies under the propagation of the hidden 
vector h. The hidden states Ὤ are computed using the formula: 

▐ ◄ █▐ ◄ ȟ╧◄  ρ  

The matrix W is the matrix of weight. And the Encoder Vector is then often computed as follow: 

ὧ ήὬȟȣȟὬ  ς  

Usually the function q is just that the last vector h computed is taken. All the outputs from the 
encoder are discarded as they are useless for the task desired. 

5.3.3.1.2 Decoder 

The decoder takes as initial vector for its hidden vectors the Encoder Vector that contains the 
information of the input sequence. Then it generates one by one the output sequence by taking 
its hidden vector and the output from the previous step:  

▐ ╬

▐ ◄ ▌◐◄ ȟ▐ ◄  σ 

◐◄ ▼▫█◄□╪● ╦ ▐ ◄

 

5.3.3.2 LSTM Cell 

Before introducing the LSTM cell, it needs to be understood why the basic RNN cells are not 
suitable for the task. First, the function f and g mentioned earlier are called activation function and 
for the RNN cell they usually are tanh function: 

È ÔÁÎÈ7 ÃzÏÎÃÁÔ8ȟÈ Â   τ  

RNN cells are good as they allow to transfer information from the past in order to make the output 
better but there are two main problems:  

- Long term dependency: the information is not carried long time as the network treat 

all new information the same and thus values from a long time ago will have less 

impact than the closest one. 

- Vanishing gradient: Because when you train such a network you want to take the 

derivative of the gradient in order to backpropagate the error made and thus update 

the weights. As the derivative of the tanh function is in [0,1] then the gradient quickly 

come very close to zero.   

To avoid these problems, (Hochreiter and Schmidhuber) have introduced Long Short-Term 
Memory (LSTM) cells have been introduced. In a few words, instead of just using a ◄╪▪▐ function 
as activation to compute the hidden vectors LSTM cells introduce some notions that will allow to 
keep in memory important values and to forget some thanks to three gates: Input gate, forget 
gate and output gate. In big words, the input gate will tell what new information is going to be 
stored into the cell state, then the forget gate will indicate the information to throw away and finally 
the output gate provide the activation to the final output of the cell. 

É  ʎ× È ȟØ Â

Æ  ʎ× È ȟØ Â  υ 

Ï  ʎ× È ȟØ Â
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Then the combination of those three information follows the equations:  

Ã ÔÁÎÈ× È ȟØ Â
Ã Æz Ã Éz Ã  φ 

È Ï ÔzÁÎÈÃ

 

By using this cell into the Encoder Decoder model that have been described earlier it will be 
possible to take a quite long sequence as input and then output another sequence possibly of 
different size. The LSTM will make sure that only the important part of the input sequence is stored 
into the hidden vector and thus the decoder will be able to generate a sequence with a better 
understanding of the input sequence.  

5.3.4 Technology used 

Different technologies have been used for different tasks alongside the project. The different part 
and technologies are listed below:  

- Preparation of the data: python (pandas, numpy)  

- Encoder decoder model: Tensorflow (Keras)  

- Work environment: Jupyter notebook  

5.4 Results 

As stated in the proposal of the task 3.5 of the edgeFLEX project, the results should be compared 
to site-specific models. After several tries, it was not possible to access such models, so no 
baseline was available to compare the results with. It has been decided to look deeper at what 
could be a benchmark in wind power forecasts and found out that Energy Meteo is a company 
that provides wind power forecasts for specific sites. The Energy Meteo forecasts are widely used 
by German energy traders because they are one of the best available in the market. It was 

Figure 9 Visual representation of a LSTM cell 

Figure 10 Visualisation of the input production data and the ground truth for the ass 
asset A 
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decided to use those forecasts as benchmark to evaluate the models with the market. The 
objective as stated in the introduction is to forecast with a horizon of 1 to 6 hours. To cover, it was 
decided to go with a forecast horizon of 6 hours with a granularity of 15 minutes. To avoid printing 
all the figure for every asset it will only shown for the asset A. All the curves would have looked 
the same for every asset. 

The input length is a parameter of the model as one could take only few hours of input to as big 
as one month. For the sake of simplicity, it was decided to go with 3 days as the increase of the 
input length slows the training phase and does not bring significant improvements. On the figure 
below, one can see a part of the input data and the ground truth that are predicted. The blue part 
is only the past production data which represents only one feature out of approximatively 200.  

The first results can be seen below for the asset A again. This is not the same curve as they are 
generated by taking randomly an input in the test set and the figure above was from the train set. 
The orange points correspond to the forecast of the model and the red points to the forecast of 
the energy meteo model.  

Even if this representation allows us to visually see the difference between ground truth, our 
forecasts and Energy Meteo forecasts, it can only be seen one forecast at a time, so it does not 
allow to compare well. Hence, it was decided to print the mean difference between EM forecasts 
and ground truth for every time step, along with the mean difference between the forecasts and 
ground truth for each time step.  

Figure 11 Visual comparison of the model and Energy Meteo forecast for asset A 
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To interpret well this graph, one should know that the graph is about the asset A that have a 

maximum output capacity of 38625 kW. The mean error across all timestep is about 3146.6 kW 
for the model and 2476.7 kW for Energy Meteo models.  

This graph for the different assets has always similar shape so it would be redundant to print all 
of them. So below is a table which summarize the results for the different assets. 

Table 3  Mean error of the model and EM model on all assets 

Assets Max capacity 
(kW) 

Model mean 
error (kW) 

EM model mean 
error (kW) 

Relative 
difference  

Asset A 38625 3146.6 2476.7 0.0173 

Asset B 14900 1228.6 976.6 0.0169 

Asset C 29500 1803.9 1517.6 0.0097 

Asset D 9900 353.9 288.0 0.0066 

Asset E 500 36.82 28.70 0.0162 

Asset F 1200 90.77 72.36 0.0153 

 

 As the table above show, our model is less efficient than the Energy Meteo models for all 
the assets. However, the delta error between the two models is small and can be explained by 
several reasons which is being explored in the later part of this report.  

Figure 12 - Mean error made by each model for every time step in the 6 hours 
horizon for asset A 
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5.5 Sensitivity analysis 

5.5.1 Effect of input sequence length  

The size of the input sequence is a matter of great importance as it is one of the biggest 
parameters. Below will be described the different outputs of our model that are obtained when 
taking different length for the input sequence. This analysis will be done again for the asset A to 
illustrate this but the results are similar for every asset. All the other parameters will be kept 
constant. The idea is to see how important the input length is. 

Table 4 Effect of the input sequence length on error and training time 

Size of input sequence  Error by the model (kW) Time per training epoch 

6 hours 3223.46 24s 

1 day 3224.92 27s 

3 days 3146.6 33s 

7 days 3249.09 45s 

14 days 3227.84 59s 

1 month 3325.00 88s 

There is one easy conclusion to make here: The input length is not important and input length 
smaller than 7 days tends to be better. This can be explained by several assumptions such as 
the wind is spontaneous so giving as input the measurement of the wind in the closest weather 
station 10 days ago gives no information to the model. 

In other words, physically the weather is a highly Brownian thing, so any data relative to more 
than a week are just noise given to the model. 

It was decided to go with 3 days as it was the one that gave the best results and with a training 
time per epoch not too significant.  
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5.5.2 Impact of the size of training data  

It is a well-known fact that a neural network requires a lot of data to achieve great results. 
However, in this case the amount of clean data that could be taken was limited due to several 
factors. The main factor is the ECMWF forecasts. A part of the historical forecasts that was being 
used cannot be accessed due to damaged tape within ECMWF data center. Therefore, it could 
only be retrieved data from April 2019 onwards. This small analysis tries to extrapolate a curve 
that shows how the increase of training data would improve the performance of our model.  

One can see above a curve which shows how the error evolves by increasing the number of 
consecutive months in the training data.  

The results must be interpreted with caution as the training of the model is not perfectly stable 
due the limited amount of data that was possible to gather. During the training process, batch of 
data are fed into the model to compute the error and then backpropagate the error to update the 
weights of the networks. However, the batch are selected randomly so the results are not constant 
and depend on the batches. Usually, the huge amount of data makes the network more stable 
but here since the dataset is limited, it is not our case. To be more accurate, a lot more data would 
be needed and plot the same graph for typically 5 years. The conclusion would be that more data 
would for sure help the model understands better and that would lead to decreasing the error.  

 

 

 

 

 

 

 

 

 

-  Figure 13 Impact of training size on error 
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Figure 14 Theoretical power curve shape 

5.5.3 How the distance between weather stations and assets impact the output?  

To begin this analysis, one can find in the following table the distance between the closest weather 
station and each asset. Those station are the one selected to be used as input for each asset.  

Table 5 Distances between assets and the closest dwd weather station 

Assets Distance to the closest dwd weather station 
(km)  

Asset A 23.83 

Asset B 21.23 

Asset C 18.70 

Asset D 16.83 

Asset E 19.14 

Asset F 18.96 

The second point that is important to emphasize here is power curves. Scientifically, when a wind 
turbine is built, the constructor has a power curves which links wind speed to power output for 
this specific turbine. This curve should look similar for every turbine as it illustrates the equation 
below:  

╟▫◌▄► ⱬ═╒▬○    

With ρ being the air density, A the swept area of the turbine, v the wind speed and ╒▬ is the 

maximum power coefficient. This equation tells us that the power should be a cubed function of 
the wind. This figure below shows how a curve should look like:  
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Now this curve is plotted for our case study with different weather stations that are more and more 
far from the asset. Because the theoretical curve is about the production of one turbine only and 
not the entire asset, it was decided to study the asset E which has only one turbine. Below is a 
figure with different plots for different dwd weather stations. In the title of each plot one can find 
the distance between the weather station and the asset.  

Figure 15 Power curve for the asset E with different weather stations 

One can clearly see a difference in the shape of the power curve when the distance between the 
asset and the dwd weather station increases. This can explain by the fact that the wind is really 
localized and that few kilometres can have very distinct wind speed.  

The impact of the distance can be identified by looking at the distance of the closest weather 
stations and the relative difference in the error between EM and our model. This relative error can 
be computed as follow:  

 

╡▄■╪◄░○▄ ▄►►▫► 
╔►►▫►□▫▀▄■ ╔►►▫►╔╜
╜╪●╒╪▬╪╬░◄◐

 χ  
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Table 6 Correlation between relative error and distance to closest weather station 

Asset Distance to closest dwd weather 
station (km) 

Relative error 

Asset D 16.83 0.0066 

Asset C 18.70 0.0097 

Asset F 18.96 0.0153 

Asset E 19.14 0.0162 

Asset B 21.23 0.0169 

Asset A 23.83 0.0173 

 

There is one easy correlation to see here: the further the dwd weather station the bigger the 
relative error. That means that our model performs better when the distance with the asset is 
smaller. Of course, this must be taken with caution also as the error of our model is not stable 
due to the lack of consistent data. 

As a side observation, these curves also expose the drama of wind power: its intermittence. These 
graphs clearly show how seldom the power produced equals the installed capacity, and the 
observer can concretely see that most of the time, the turbines produce nothing or close to 
nothing. 

5.5.4 Different models for different timeframes 

When observing the commercial predictions available, the continuity from present conditions 
towards the future is effective, which is not always the case when using one single neural network 
trained model. Therefore, it is likely that hybrid approaches are used to provide short term and 
mid-term predictions. 

In effect, short-term and mid-term predictions are likely to behave differently. Hence using 
different trained neural networks for each one should make sense, with some logic to reconcile 
the eventual gaps between the two at their frontier, or even giving the first as input for the second. 

5.6 Conclusion 

5.6.1 Framework 

To sum up this report, the goal was to use machine learning to forecast wind power production 
and compare this forecast to traditional site-specific models. In terms of site-specific models, 
Energy Meteo forecasts were used, which are the best in the market at the time of writing this 
report. 

The sequence-to-sequence model was used, which are one of the best approaches in terms of 
multi-step ahead forecasts. 

5.6.2 Limitations - data quality and availability 

There is a principle which says that getting and preparing the data is 80% of the project. And this 
project did not make an exception to the rule. Among the several issues that were encountered 
during this project, most were related to the data gathering. 
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In order to get the data that make sense for this project different sources had to be explored 
across different origins, including internal data available, and the internet. To get weather forecast, 
ECMWF was the best choice as it is well-known and commonly used in every project concerning 
power forecast and wind power forecast. However, even there, they have an issue with their 
storage servers which make impossible to retrieve most of the much-needed gridded weather 
forecasts. 

So, it ended up that as of early 2021, the best range of data possibly available corresponds to 
one year for the training part, 2 months for the validation and 2 months for the test data. After 
different approaches to asset owners it was not possible to access actual weather measurements 
on-site, so measurement from nearby weather stations had to be taken. 

Note: it will not be possible to Alpiq to obtain better data for this study; and the achievements 
highlighted here-after constitute the best outcome that was possible to achieve with the data at 
hand. 

5.6.3 Achievements 

Even if they are strictly speaking not as good as Energy Meteo, the results that were achieved 
are, for all assets, almost as performing as the top-of-the-market forecasts provided by Energy 
Meteo. Besides, these performances are quite encouraging considering the several limitations 
that had to be dealt with. 

Hence, with longer and closer data at hand, the results show that it is possible to achieve results 
equal or better than those of Energy Meteo. So, a sensitivity analysis was conducted with the aim 
of illustrating that better results can be achieved with data of better quality. This analysis focuses 
on the size of the data, the size of the input length to feed into the model, and on the effect of the 
distance between asset and weather stations. 

The following conclusions arise: 

¶ For the data that was available, the size of the input sequence, ranging from 6 hours to a 
month, did not have a significant importance to predict 6 hours of wind production. 

¶ By increasing the size of the input data, the error of the model would decrease but not 
drastically. 

¶ The distance between actual weather measurements and the asset is of crucial 
importance. The power output of a turbine is highly correlated to the wind speed which is 
very local. This effect was observed by plotting different power curves for the same asset 
but only changing the distance between the asset and the weather station. The shape of 
the curve got scattered as the distance increased. It was also possible to compute the 
relative error with the Energy Meteo forecasts and it has been identified that the bigger 
the distance, the bigger the relative error. 

All those conclusions are encouraging for the moment and circumstances when, one day, higher 
quality data would be available to train a similar model. 
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6. Price Forecasts 

Since the deregulation of the energy markets in the 1980s, electricity price forecasting (EPF) has 
become an increasingly important element of the decision-making of energy companies, whilst 
attracting more attention from researchers in academia.  

Electricity price forecasting is a challenging and complicated task, both due to the multitude of 
factors affecting electricity price and the characteristics of electricity that make it is a rather unique 
element of the commodities asset class. Electricity cannot be stored at large scale, making it 
difficult to balance supply with demand - a prerequisite for the efficiency and stability of the energy 
systems. This in turn results in volatility and complex price dynamics [12]. A multitude of external 
variables such as seasonal patterns, weather, other fuel prices increase uncertainty about 
demand and supply, further complicating the task of forecasting electricity prices. Balancing 
energy systems has become even more of a serious challenge in recent years due to the growth 
in volatile “renewable” energy supply. Maintaining accurate forecasts is thus an essential element 
of an energy company's operations, with forecast accuracy improvements translating into 
significant element of financial and operating performance.  

The significant body of electricity price forecasting research has, until recently, been primarily 
focused on point prediction. However modern developments such as intermittent energy, smart 
grids and increased competition have brought on better understanding of the importance of 
probabilistic electricity price forecasting due to increased volatility and complexity of the future 
supply [18].  

In his review of state of the art methods at the time, Weron [25] speculated that probabilistic 
forecasting would be one of the key directions for the development during the next decade (2014-
2024). This prediction has been largely confirmed with probabilistic price forecasting becoming 
both more developed and popular, as evidenced by participation in the Global Energy Forecasting 
Competition (GEFCom2014) [11]. Probabilistic price forecasting has significant benefits by 
allowing energy companies to evaluate uncertainty in a more comprehensive and rigorous 
manner, resulting in improved strategic and tactical planning, as well as the improved 
effectiveness of the submitted bids. [18]. At the same time, the current state of forecasting still 
retains significant focus on point predictions, requiring both the development of new probabilistic 
forecasting methods and their improved use by the industry. 

Over the years, both statistical and machine learning methods have been employed to forecast 
electricity prices, until recently the results have been rather inconclusive in terms of both classes 
of methods providing superior performance across wide range of datasets. The statistical 
methods are designed to capture the characteristics of electricity prices [24] by modelling the 
dependence of future electricity prices with the past history and external variables. A typical 
parsimonious model would only use historical prices and often utilize an 'auto-regression' model 
structure. The main advantage of statistical models is that they are well-understood, are easy to 
interpret and are tailored to account for electricity price patterns. The disadvantages include 
utilization of linear dependencies that are often unable to fully capture complicated and rather 
unique patterns of electricity patterns, resulting in sub-optimal forecast performance. 

Deep learning has seen great success in areas such as computer vision (CV) and natural 
language processing (NLP). Whilst deep learning research for time-series forecasting has been 
lagging compared to CV and NLP, the recent forecasting competitions such as M4 [13] and M5 
have demonstrated clear advantages of considering machine and deep learning methods for 
time-series forecasting problems in addition to classical statistical methods. All the winners of the 
M5 forecasting competition have utilized machine / deep learning methods, with additional 
research indicating that some machine learning methods provide better forecasts in terms of both 
accuracy and bias [21]. Cross-learning across time-series in particular provides clear advantages 
of deep learning methods compared to statistical ones, although other advantages such as the 
ability to process complex non-linear structures and external variables, combined with expressive 
power and the ability to exhibit temporal dynamic behaviour [10] provide clear advantages for 
univariate time-series forecasting.  
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Following developments in machine learning research for time series forecasting, several state of 
the art machine and deep learning approaches were considered for the modelling of electricity 
prices:  

1) Multichannel Singular Spectrum Analysis (mSSA) - a popular and widely used time series 

forecasting method. As demonstrated in [1], mSSA was found to outperform deep neural 

network architectures such as LSTM and DeepAR in the presence of missing data and 

noise level. 

2) DeepAR a methodology (developed by Amazon Research) for producing accurate 

probabilistic forecasts, based on training an auto-regressive recurrent network model 

[20]. GluonTS [2] implementation of DeepAR is used for the experiments. 

3) N-BEATS - a deep neural architecture based on backward and forward residual links and 

a very deep stack of fully-connected layers [19]. The architecture demonstrated good 

performance in M4 forecasting competitions and more recently [19] has been used for 

electricity load forecasting. 

The above models are applied to generate and benchmark 168-hour ahead forecasts at three 
time points: 1) 31-Dec-2020 2) 31-Jan-2021 3) 29-Feb-2021. Our approach is to demonstrate 
benefits from using machine and deep learning forecasting technologies, rather than 
comprehensive evaluation of different classes of methods or add to the debate on the benefits of 
machine learning vs. statistical algorithms. Forecasts were generated for 168 hours (7 days) 
ahead and benchmark forecasts against 168 hour lagged naive forecast that is able to capture 
daily and hourly dynamics of electricity prices (thus is competitive benchmark in the short term, 
especially as our forecasts are of parsimonious nature and only use historic price information).    

Mean squared error (MSE) has been utilized to measure performance of considered forecasting 
frameworks to obtain the following results in Table 4. Our results demonstrate significant benefits 
(as measured by forecasting value added - FVA) from applying powerful deep learning 
frameworks such as DeepAR and N-Beats, as well data-driven models such as mSSA that are 
able order to capture dynamic and feature-rich behaviour of electricity prices. The applied 
frameworks are able to demonstrate, even without any hyper-parameter optimization, that 
powerful open-source frameworks such as mSSA, DeepAR and N-Beats are able to generate 
(see Table 6) very competitive forecasting inputs in comparison with expensive commercial 
forecast feeds. 

Table 7 Mean Squared Error 

Forecast Jan-20 Feb-20 Mar-20 

Naïve 493.62 553.76 372.92 

mSSA 372.92 402.01 1016.17 

DeepAR 272.93 220.53 254.01 

N-Beats 275.22 201.1 106.24 
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7. Nuances of Optimization 

We optimize against prices which implies that turbines should produce when the price is high and 
be off when it is low. As for the battery, it should discharge when the price is high and it should 
charge the battery when it is either low or negative.  

7.1 The choice of sub-pools 

At time ὸ, we take the optimal solution from time ὸ ρ and calculate the following arrays: 

ὖ ὴȟȟ

Π

ȟ                                       Ὧ  ɴρȟςȟȢȢȢȟΠὃȟ  

ὖ ὴȟȟȟ Ὧ  ɴρȟςȟȢȢȢȟΠὃȟὭɴ  ρȟςȟȢȢȢȟΠὝὯ Ȣ 

So, when choosing which power plant to add to the sub-pool, we prefer such power plants Ὧ for 

which ὖ is larger. When we chose a power plant Ὧ as part of the pool, we decide which turbines 

to add first according to the values ὖ , i.e. we prefer the higher values of ὖ . Since we run 
optimization every 15 minutes, in many cases there is not a very significant difference between 
the problems at time ὸ and ὸ ρ and this is one of ways to exploit it.  

7.2 Hardware and solvers 

We use m5d.4xlarge EC2 instance within Amazon Web Services i.e. 16 vCPUs and 64 GiB RAM. 
In optimization, we employ two solvers: Cbc and Gurobi. In order to optimize our set of assets, 
we can get by with CBC, but in order to deal with portfolios of replicated biogas power plants, we 
will need to resort to the commercial solver Gurobi.  

7.3 Implementation of Proximal Jacobian ADMM 

The proximal Jacobian ADMM (Alternating Direction Method of Multipliers) was developed in [8] 
and [23] and its convergence for linear programming problems was proven in the same literature. 
In this study apart from Gradual Increase, we also use Proximal Jacobian ADMM, where we first 
relax all integrality constraints and let the algorithm iterate until the acceptable violation of coupling 
constraints is achieved: the preservation of the rest of the constraints is provided by the 

subproblems. After finishing the linear programming part we get the action vectors  ὼ , for each 

Ὧ  ɴρȟςȟȢȢȢȟΠὃ . Let ὥ  denote ὃ ẗ ὼ  , i.e. ὥ ὃ ẗ ὼ . Then for each asset Ὧ, we recover 
the mixed-integer action vector by solving the following subproblems.    

 

ÍÁØÉÍÉÚÅ      ὴ ẗ ὼ  

ίȢὸȢ   ὃ ẗὼ  ὥ ȟ  

    ὄ ẗὼ ὦȟ 

       ὼ Ὅ  ɴπȟρȢ 

(31) 

 

Sometimes these problems are infeasible, but we handle this as follows: if ὑ is a subset of 

ρȟςȟȢȢȢȟΠὃ such that for each Ὧᶰὑ, problem (31) is infeasible, then we can solve:   

 

https://projects.coin-or.org/Cbc
https://www.gurobi.com/
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ÍÁØÉÍÉÚÅ            ὴẗ ὼ

ᶰ

 

ίȢὸȢ   ὃ ẗὼ

ᶰ

 ὥ

ᶰ

ȟ  

     ὄ ẗὼ ὦȟ 

        ὼ Ὅ  ɴπȟρȟ 

  ᶅὯᶰὑȢ      

In all our problems Πὑ  τ and such pools are solved in matter of seconds. However this 
procedure provides sub-optimal solutions, but this technique is amenable to parallelization [23] 
and can handle extra large pools of assets. It can also be easily shown that this algorithm can be 
combined with Gradual Increase.   

7.4 Parallelization 

Parallelization is crucial in optimizing these kinds of virtual power plants. And when applying any 
aforementioned methods, we propose using two independent machines where the first machine 
runs the problem from scratch uninterrupted and the second machine starts from scratch, but gets 
interrupted when decomposition, splitting or pruning methods find a new feasible solution and 
then, with a new start, they resume the calculations, having preserved all the branch & bound 
trees. When any method gets the confirmation that there is the optimal solution, then all other 
cores terminate. The same happens when the time limit is expired. In this case of all feasible 
solutions found by all methods, we choose the one which yields the largest value of the objective 
function. The usage of an independent and uninterrupted core is proposed in order to make sure, 
that decomposition methods will not lead to longer computation times. This can happen in 
situations when a solver was capable of finding the optimal solution almost immediately and most 
of the time was spent on the confirmation that the solution is optimal. In such special cases GI 
would only decelerate the total computation time but it will not happen if it is coupled with such a 
core. We also propose utilizing an interrupted machine in order to preserve branch & bound trees: 
each feasible solution can enrich the search space. 

Table 8 Notation for Model Predictive Control 

The Symbol Explanation 

Ὄ the prediction horizon 

Ὤ the execution horizon (realized schedule) 

ὴɳὶέὨ  the realized imbalance    

▬►▫▀◄
╦ the forecasted imbalance for time ὸ 

 ▬►▫▀◄
╦  ɝ ὴὶέὨ ȟɝ ὴὶέὨ ȟȢȢȢȟɝ ὴὶέὨ  

ɝ ὴὶέὨ  the forecasted imbalance for time ὸ 

 ▬►▫▀◄
╦ the forecasted imbalance for times from ὸ to ὸ Ὄ ρ 

╢◄╪◄▄◄ the state of the system at time ὸ: storage levels, and the 
states of turbines. 
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8. Results 

In this section, we present the results of our calculations related to the speed (Subsection 7.1) 
and the optimality in a stochastic environment (Subsection  7.2). In both cases, we consider the 
following period: 2020/1/1 - 2020/9/26. In the case of the speed, our prediction horizon Ὄ) is two 

days ahead. In the case of optimality, our prediction horizon (Ὄ) is 3 days ahead. In both cases 

the execution horizon (Ὤ) is 24 hours. In the case of the speed, we use only state of the art 
commercial price forecast and assume perfect knowledge of the imbalance. We emphasize that 
the size of imbalance increases proportionally to the number of assets; otherwise the optimization 
problem would be trivial. In the case of optimality, we consider different cases, described in 
Subsection 7.2. 

8.1 Speed 

When we explore the speed, our benchmark is the time needed to solve the MILP problem by the 
Gurobi solver. We call this approach the Brute Force and the proposed decomposition and 
splitting algorithms must enable us to find the solution faster. Table 5 summarizes the average 
calculation times provided by different methods. The headers of each column refer to the method 
applied and in the caption of the table there is the explanation of the abbreviations in the headers. 
The methods in the headers with italic font are the techniques which yield sub-optimal solutions 
but the resulting value of ὝέὸὙὩὺ yielded around 99.96% of the maximum. Such methods are: 
partial integrality, partial integrality coupled with gradual increase, proximal Jacobian ADMM, and 
proximal Jacobian ADMM coupled with Gradual Increase. The methods such as Brute Force, 
Gradual Increase, and ( )-prune lead to the optimal solution, provided the solver has enough 
time. In Figure 1 and Table 5, we can observe how Gradual Increase (GI) outperforms Brute 
Force (BF) in terms of time. When we solve problems by Brute Force, we only have the time limit 
of 15 minutes, i.e. the computations finish if either the optimal solution is found (the relative 
difference between the upper and the lower bound is below 0.01%) or the time limit has expired. 
In columns BF, GI, PI, GI-PI, and ( )-prune we try to get the optimality message within 15 
minutes. As for methods based on ADMM, this approach is irrelevant and the stopping criteria for 
these algorithms are described in Subsection 6.3. So, in Figure 1, we can see that GI improves 
over BF when we increase the number of assets, but when we get closer to 200 then the 
difference is smaller. This is because we finish either when the optimal solution is found or when 
the time limit is exceeded. Thus, the more assets we have in the portfolio, the more cases we 
face when the computation time would expire. As stated above, GI helps us find the optimal 
solution, but it has nothing to do with the confirmation of the optimal solution (calculation of upper 
bounds). In order to accelerate this confirmation, we can either resort to the method ( )-prune or 
to Partial Integrality. In this case, we do not get to the expiration of the time limit and the fastest 
method turned out to be the combination of Gradual Increase and Partial Integrality which yields 
average calculation time 4.17 times smaller than that of Brute Force. The method Proximal 
Jacobian ADMM is relevant only for large pools of assets, therefore we started calculations from 
52 assets in the pool. And we can see that Brute Force outperforms this method in terms of speed 
for 52, 102, and 150. But when we have 200 assets, then Proximal Jacobian ADMM outperforms 
Brute Force. When we combine Proximal Jacobian ADMM with Gradual Increase, then we get 
further acceleration (column GI-PJ-ADMM) for 200 assets – approximately 1.3 times faster than 
Brute Force. Another positive side of Proximal Jacobian ADMM is that it imposes lighter memory 
requirements on the machine than other proposed methods [5]. In our further research, we are 
going to combine all these methods and to conduct pruning non-tight constraints by means of the 
methods of machine learning. 
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 Figure 16 Comparison of Average Computation Times (s) 

8.2 Optimality 

When we explore the optimality, we attempt to get as close as possible to the total revenue that 
we would achieve in the case of perfect foresight, when both prices and imbalances are known 
in advance. So, the cumulative revenues under perfect foresight is our benchmark and we explore 
the percentage of it provided by different methods. We explore this by means of variable „  
(Defined in Subsection 2.4.5), which is apparently unit for the case of perfect foresight. Figure 2 
summarizes the cumulative revenues. All these revenues are divided by total revenue yielded by 
the perfect forecast, i.e. the variable ὝέὸὙὩὺ associated with perfect foresight defined in 
Subsection 4.1. So the last point of every line in Figure 2, i.e. the one, situated furthest to the 
right, is the value of „ corresponding to the forecasts and MPC methodology.   Table 6 

summarizes the „-values. We can observe that when we use commercial state of the art forecasts 
and assume perfect foresight of productions, then RMPC yields slightly higher revenues. In the 
case of uncertain productions, we utilize only RMPC because we prefer simulations of the 
realizations of productions rather than trying to find a point forecast: the forecast of the imbalance 
is a challenging task and the exploration of it exceeds the scope of this report. But mimicking this 
imbalance by ARMA processes yields „ equal to 84.19% if we use commercial forecasts and „  
equal to 81.29%, if we use mSSA, which can be achieved by utilizing open-source software.   
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Table 9  Average speed of calculations (in seconds) for methods: Brute Force (BF), Gradual 
Increase (GI), Partial Integrality (PI), Combination of Gradual Increase and Partial 
Integrality (GI-PI), Pruning of non-tight constraints (( )$-prune), Proximal Jacobian ADMM 
(PJ-ADMM), Combination of Gradual Increase and PJ-ADMM (GI-PJ-ADMM). 

#Assets BF GI PI GI-PI ( )-prune PJ-ADMM GI-PJ-
ADMM 

4 6 8 - - 4 - - 

8 45 50 - - 33 - - 

10 52 49 6 5 27 - - 

25 140 119 9 8 87 - - 

32 166 129 55 44 95 - - 

52 278 184 105 79 192 390 368 

102 407 257 113 93 233 450 411 

150 480 358 231 143 279 497 479 

200 643 601 280 154 381 532 495 

 

Table 10 The σ-value for MPC/RMPC and different forecast methods (σ is the percentage 
of maximum possible revenue). 

Price Input Imbalance Input Control Method Ɑ (in %) 

Perfect Foresight Perfect Foresight MPC 100.00 

Commercial Perfect Foresight RMPC 94.40 

Commercial Perfect Foresight MPC 93.98 

mSSA Perfect Foresight MPC 88.75 

Commercial ARMA simulations RMPC 84.19 

mSSA ARMA simulations RMPC 81.29 

DeepAR ARMA simulations RMPC 77.34 

N-BEATS ARMA simulations RMPC 72.53 
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Figure 17 Comparison of Cumulative Revenues (normalized) 
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9. Conclusion 

One of the most important objective of a VPP operation is to optimize the revenues resulted from 
its assets operation. In this report is presented an algorithm for optimization of a VPP operation, 
with the significant side effect of increasing the volume of electricity generated on RES. The 
complex optimization algorithm developed in edgeFLEX requires input data of a high quality. 
Therefore, the authors of the present report have developed innovative algorithms for the forecast 
of electricity prices and volume of wind-based electricity generation. Full implementation of the 
solutions presented in this report, in the operation of a VPP is expected to increase the revenues 
of the RES-based electricity generators members of the respective VPP. 

We have explored the computation times of GI and Proximal Jacobian ADMM dependent on the 
number of biogas power plants. The main point of these calculations is that we are able to handle 
up to hundreds of power plants within a pool if we properly use decomposition and splitting 
methods (or their combination). We also learned that the combination of Gradual Increase with 
Partial Integrality yields further improvements in computation time. Similar results are achieved 
when we combined Gradual Increase with Proximal Jacobian ADMM. We have also conducted 
experiments with a pool of two biogas power plants and a single battery in order to compare 
different forecasts (Commercial state of the art, mSSA, DeepAR, N-BEATS) and optimization 
methods (MPC and Robust MPC). The usage of Robust MPC yielded the revenue 0.447 % higher 
than that of MPC, therefore in our future research we will consider combining Robust MPC with 
decomposition methods in order to achieve analogous results for larger pools.  When we optimize 
the VPP by means of RMPC under price and imbalance uncertainty, then the utilization of 
commercial price forecasts yields 84.19% of the maximum possible revenue whilst the usage of 
our mSSA forecasts yields 81.29% of it. However, this forecast can be achieved by using of open-
source software. The violet line in Figure 6 (i.e. the line '(RMPC) mSSA, ARMA' was calculated 
by entirely open-source software: the optimization was conducted via CBC solver. All the 
optimization calculations related to Table 6 and Figure 2 were conducted with CBC solver. The 
ability to run virtual power plants by means of open-source software also facilitates balancing and 
the incorporation of newly distributed energy resources into the grid. However, there is still the 
need for commercial solvers when we deal with large systems consisting of hundreds of assets. 
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13. List of Abbreviations 

ADMM  Alternating Direction Method of Multipliers 

ARMA  AutoRegressive Moving Average 

BF  Brute Force 

DER  Distributed Energy Resources 

DWD   Deutsche Wetter Dienst 

ECMWF European Centre for Medium-Range Weather Forecasts 

EM  Energy Meteo 

GI  Gradual Increase (a method of warm starts) 

LSTM  Long Short-Term Memory 

ML  Machine Learning 

MPC  Model Predictive Control 

mSSA  Mulchannel Singular Spectrum Analysis 

NWP  Numerical Weather Prediction 

PI  Partial Integrality 

PJ  Proximal Jacobian 

RMPC  Robust Model Predictive Control 

RNN  Recurrent Neural Network 

TIGGE  The International Grand Global Ensemble 

VPP  Virtual Power Plant 

 


